首席数据科学家的一天是怎么样的?

来源: 高顿教育 2024-07-19
量化金融是一个要求很高的领域,为好奇心强、积极进取的人提供了很好的机会,量化金融的各类岗位,可以为那些有志于将技术技能应用于金融市场的人提供量化的薪酬、发展机会和可观的工作满意度。
CQF量化金融
《CQF量化金融职业指南》基于多渠道的研究简要介绍了其所需的技能,典型角色和职责,以及一般薪酬范围。今天我们就以数据科学为例:
从事数据科学和机器学习的专业人员负责研究、建模和测试,他们使用数据集揭示经验数据中的关系和模式。
01
数据科学和机器学习所需技能
该领域工作的专业人员需要对算法、机器学习和特定领域(如自然语言或信号处理)有深入的了解,以帮助识别和评估数据中的模式。他们具有很强的定量分析能力,对人工智能和机器学习技术有扎实的理解,并且熟悉机器学习中常用的编程语言,如Python。
Quants在数据科学和机器学习中的角色需要大量的模型和编程知识,这些工作往往位于组织的研究领域内,在数据科学和机器学习方面十分活跃的公司包括投资银行、资产管理公司、对冲基金和为金融业提供咨询服务的技术公司。在为金融业开发软件产品的纯科技公司中,quants也有很多机会。
02
典型工作领域
数据科学家
数据科学家的岗位是多种技术角色的组合,包括统计学家,科学家,数学家和计算机程序员。这项工作需要通过预测建模和机器学习技术来收集,清理,分析和解释大量数据集,以检测数据集中的模式,趋势和关系。
数据工程师
数据工程师构建的系统用于收集、管理、验证原始数据并将其转换为高质量、可用的信息,供数据科学家研究。
数据分析师
数据分析师使用描述性统计来评估问题,创建数据可视化,并根据实证分析开发见解,他们可以协助收集和清理数据集,并为数据科学团队的高级成员提供支持。
薪酬
数据科学和机器学习岗位薪资水平
根据CQF协会进行的量化金融职业调查,对于从事数据科学的人来说,76%的日常工作涉及数据分析、研究、建模和编码。这条职业路径在很大程度上取决于良好的编程技巧,求职者应该对机器学习的工具和技术有扎实的了解。
学姐可以把当时上岸的备考规划给你。少走1个月的弯路,同时我把备考的资料分享给大家,都是课程的内部资料,大家需要的可以戳下面卡片领取↓↓↓
另外,分享一位首席数据科学家的一天,看看他一天的工作流程是怎样的。
03
首席数据科学家的一天
CQF校友VictorAcevedo是秘鲁最大的银行——秘鲁信贷银行(BCP)的一名首席数据科学家。他毕业时获得了经济学学士和统计学硕士学位,
如今他拥有10年开发与信贷风险有关的分析解决方案的经验,并领导着一个专注于该业务领域的数据科学家团队。我们采访了Victor,以了解更多关于他目前岗位的工作日常。
我在秘鲁最大的商业银行——BancodeCreditodelPeru(BCP)秘鲁信贷银行工作,作为首席数据科学家,我负责部署和实施信用风险问题的分析解决方案。大多数情况下,解决方案涉及估算预期损失的输入,即违约概率,违约损失,以及违约风险。
我们还根据经济资本要求的需要,建立这些参数的周期版本,最近,我把大部分时间用于设计一个新的工作流程,以便为我的业务部门建立一个违约损失率模型。以下是我的工作日常:
8:30AM-9:00AM
我开始工作时,会快速review我的邮件和当天要参加的会议。我还会检查我桌面上的便签,上面记录着当天我想给到团队的信息,
9:00AM-9:30AM
到了每天和团队开早会的时间。通常我会要求团队成员对前一天工作的进度做一个快速总结,同时了解一下他们在现阶段是否遇到问题,看看我可以如何帮助他们。
9:30AM-12:30PM
起身舒展一下筋骨,然后继续工作。基于和团队开的早会的情况,我需要决定是否将这段时间集中在解决事务性问题上,亦或是聚焦在某一关键任务上,
客户有时会在这时候给我打电话,询问我们开发的模型。我们为业务部门提供的分析解决方案范围很广,他们可以从给特定人群降低风险到为目标受众生成相关的报价,然而,我们大部分的工作都集中在开发信用风险预测的模型上。我们经常与客户讨论应该使用的算法类型、主要假设、解决方案的实施方式和开发时间。
12:30PM-14:00PM
如果我在办公室,那我会和团队一起午餐,要不然就是和我的家人共进约1小时的午餐,剩余时间会用来看世界新闻或者休息,暂时摆脱我的手机。
14:00PM-14:30PM
午餐后,我倾向于把时间花在事务性的工作上而不是继续我从早上开始的更耗费精力的工作。比如,我通常用这段时间开始回复当天收到的邮件。
14:30PM-17:30PM
我继续研究针对业务问题的拟解决方案,然后将其提交给客户。通常我会在下午和团队碰一下,以防他们需要我的帮助。
17:30PM-18:00PM
下班前,我会最后一次查看我的邮箱并写下第二天的待办事项。有时,在晚上,当一切都安静下来的时候,我会花一些时间阅读与我的领域有关的文章,或者思考如何将我在CQF中学到的东西应用于创新我在工作中的做法。
通过CQF中的“数据科学&机器学习”模块学习,为学员们提供了使用预测建模和机器学习方法分析和解释发亮数据集的经验。PythonLab还为学员们提供了实操一系列Python编程技术的机会。
高顿教育
精彩内容已结束,欲知更多CQF考试相关内容,请移步【报考指南】栏目!一键轻松GET最新CQF报名流程、考试内容、证书获取全面信息!CQF(量化金融分析师)考证新征程,高顿教育CQF陪您一起走过!
 
CQF备考 热门问题解答
CQF考试难度大不大?

CQF考试的难度还是挺大的,因为CQF课程内容非常丰富,需要掌握的知识点非常多。CQF考试主要包括金融工程、计量金融、风险管理、计算金融等多个方面的知识,需要考生掌握才能通过考试。

cqf一共几门几年考完?

cqf一共8门考试,考试的时间每个人都不同,如果考生基础较好的话,那么最快6个月通过所有考试,因为cqf考试的一个学习周期就是半年左右。如果考生的基础比较薄弱,那么通过考试的时间可能就会比较短了。

cqf一年考几次?

cqf的考试一共有四次,每年完成相应的课程就可以考试了。学员可以在六个月内完成六个模块的学习并选修选修课,从而全面攻读该课程。此选项提供立即访问整个计划所需的所有材料以及终身学习。

cqf的含金量如何?

cqf证书含金量是很高的,这一点毋庸置疑。cqf的课程内容不仅包含量化金融领域的基础知识,同时不断更新和吸收前沿的国际量化金融知识,其学习模块有好几种,分别是数据处理基础、量化投资多平台模拟交易、金融知识基础和Python语言编程基础等,内容这一块还是值得金融行业的人才学一下。

在线提问
严选名师 全流程服务

Anna

CFA持证人/FRM持证人

学历背景
先后毕业复旦大学、东京大学,金融学、物理学双硕士
教学资历
CFA/FRM研究院特级讲师,CFA/FRM研究院金融科技教研总监
客户评价
专业度高,擅长规划,富有亲和力
Anna
  • 老师好,考出CQF的难度相当于考进什么大学?
  • 老师好,CQF考试怎样备考(越详细越好)?
  • 老师好,38岁才开始考CQF会不会太迟?
  • 老师好,CQF通过率是多少?
  • 老师好,有了CQF证后好找工作吗?
999+人提问

Sukey

CFA持证人/CQF持证人

学历背景
德国曼海姆大学金融学硕士,西南财经大学金融学学士
教学资历
CFA/FRM研究院特级讲师,CFA/FRM研究院成都分院院长
客户评价
专业,热情洋溢,细心负责
Gloria
  • 老师好,cqf如果不去考会怎么样?
  • 老师好,cqf难度有多大?
  • 老师好,cqf证书挂出去多少钱一年?
  • 老师好,cqf考试科目几年考完?
  • 老师好,cqf工资一般是多少钱?
999+人提问

Paul Wilmott

CQF创始人

学历背景
牛津大学博士
教学资历
国际知名的数量金融工程专家
客户评价
课程讲授幽默风趣,深入浅出,引人入胜
Zion
  • 老师好,cqf工资待遇如何?
  • 老师好,35岁考cqf有意义吗?
  • 老师好,考过cqf能干嘛?
  • 老师好,考完cqf可以做什么工作?
  • 老师好,cqf注册会计师年薪一般多少?
999+人提问

高顿 > CQF > 常见问题