SOA之北美精算师历年真题:November2005ExamM(第5部分)
来源:
高顿网校
2014-07-16
高顿网校小编呼唤专考北美精算师考友们,点击查看SOA之北美精算师历年真题:November2005ExamM(第5部分)。
23. Kevin and Kira are in a history competition:
23. Kevin and Kira are in a history competition:
(i) In each round, every child still in the contest faces one question. A child is out as
soon as he or she misses one question. The contest will last at least 5 rounds.
(ii) For each question, Kevin’s probability and Kira’s probability of answering that
question correctly are each 0.8; their answers are independent.
Calculate the conditional probability that both Kevin and Kira are out by the start of round
five, given that at least one of them participates in round 3.
(A) 0.13
(B) 0.16
(C) 0.19
(D) 0.22
(E) 0.25
Exam M: Fall 2005 -24- GO ON TO NEXT PAGE
24. For a special increasing whole life annuity-due on (40), you are given:
(i) Y is the present-value random variable.
(ii) Payments are made once every 30 years, beginning immediately.
(iii) The payment in year 1 is 10, and payments increase by 10 every 30 years.
(iv) Mortality follows DeMoivre’s law, with 110 ω= .
(v) 0.04 i =
Calculate ( ) Var Y .
(A) 10.5
(B) 11.0
(C) 11.5
(D) 12.0
(E) 12.5
Exam M: Fall 2005 -25- GO ON TO NEXT PAGE
25. For a special 3-year term insurance on ( ) x , you are given:
(i) Z is the present-value random variable for this insurance.
(ii) q k x k + = + 002 1 . ( ), k = 0, 1, 2
(iii) The following benefits are payable at the end of the year of death:
k bk+1
0 300
1 350
2 400
(iv) i = 006 .
Calculate Var Z b g .
(A) 9,600
(B) 10,000
(C) 10,400
(D) 10,800
(E) 11,200
Exam M: Fall 2005 -26- GO ON TO NEXT PAGE
26. For an insurance:
(i) Losses have density function
( ) 0.02 0 10
0 elsewhere X
x x
f x
< < ?
= ??
(ii) The insurance has an ordinary deductible of 4 per loss.
(iii) P Y is the claim payment per payment random variable.
Calculate E P Y ? ? ? ? .
(A) 2.9
(B) 3.0
(C) 3.2
(D) 3.3
(E) 3.4
Exam M: Fall 2005 -27- GO ON TO NEXT PAGE
27. An actuary has created a compound claims frequency model with the following properties:
(i) The primary distribution is the negative binomial with probability generating function
( ) ( ) 2 1 3 1 P z z ? = ? ? ? ? ? ? .
(ii) The secondary distribution is the Poisson with probability generating function
( ) ( ) 1 z P z eλ ? = .
(iii) The probability of no claims equals 0.067.
Calculate λ.
(A) 0.1
(B) 0.4
(C) 1.6
(D) 2.7
(E) 3.1
Exam M: Fall 2005 -28- GO ON TO NEXT PAGE
28. In 2005 a risk has a two-parameter Pareto distribution with 2 α= and 3000 θ= . In 2006
losses inflate by 20%.
An insurance on the risk has a deductible of 600 in each year. i P , the premium in year i,
equals 1.2 times the expected claims.
The risk is reinsured with a deductible that stays the same in each year. i R , the reinsurance
premium in year i, equals 1.1 times the expected reinsured claims.
2005
2005 0.55 R
P =
Calculate 2006
2006
R
P .
(A) 0.46
(B) 0.52
(C) 0.55
(D) 0.58
(E) 0.66
Exam M: Fall 2005 -29- GO ON TO NEXT PAGE
29. For a fully discrete whole life insurance of 1000 on (60), you are given:
(i) The expenses, payable at the beginning of the year, are:
Expense Type First Year Renewal Years
% of Premium 20% 6%
Per Policy 8 2
(ii) The level expense-loaded premium is 41.20.
(iii) i = 0.05
Calculate the value of the expense augmented loss variable, 0 e L , if the insured dies in the
third policy year.
(A) 770
(B) 790
(C) 810
(D) 830
(E) 850
Exam M: Fall 2005 -30- GO ON TO NEXT PAGE
高顿网校之为人处世:若能一切随他去,便是世间自在人。
高顿网校之为人处世:若能一切随他去,便是世间自在人。
版权声明:本条内容自发布之日起,有效期为一个月。凡本网站注明“来源高顿教育”或“来源高顿网校”或“来源高顿”的所有作品,均为本网站合法拥有版权的作品,未经本网站授权,任何媒体、网站、个人不得转载、链接、转帖或以其他方式使用。
经本网站合法授权的,应在授权范围内使用,且使用时必须注明“来源高顿教育”或“来源高顿网校”或“来源高顿”,并不得对作品中出现的“高顿”字样进行删减、替换等。违反上述声明者,本网站将依法追究其法律责任。
本网站的部分资料转载自互联网,均尽力标明作者和出处。本网站转载的目的在于传递更多信息,并不意味着赞同其观点或证实其描述,本网站不对其真实性负责。
如您认为本网站刊载作品涉及版权等问题,请与本网站联系(邮箱fawu@gaodun.com,电话:021-31587497),本网站核实确认后会尽快予以处理。
严选名师 全流程服务
其他人还搜了
热门推荐
-
2015年合肥精算师考试:专业知识介绍 2014-12-29
-
2015年阜阳精算师考试:专业知识介绍 2014-12-29
-
2015年淮南精算师考试:专业知识介绍 2014-12-29
-
2015年淮北精算师考试:专业知识介绍 2014-12-29
-
北美精算师ASA介绍:精算学的专业范围 2014-12-29
-
北美精算师ASA介绍:精算学的专业范围详解 2014-12-29
-
北美精算师ASA介绍:精算学的专业范围是什么 2014-12-29
-
黔南布依族苗族自治州考生进:精算师考试职业定义 2014-11-07
-
黔东南苗族侗族自治州考生进:精算师考试职业定义 2014-11-07
-
考生看过来:北美精算师资格考试相关介绍 2014-11-07
-
作为考生你需要了解:北美精算师资格考试相关介绍 2014-11-07
-
作为考生你需要了解:日本精算师考试资料(4) 2014-11-05
-
考生须知:日本精算师考试资料(4) 2014-11-05
-
详细为你介绍日本精算师考试资料(4) 2014-11-05
-
精品阅读:日本精算师考试资料(4) 2014-11-05
-
精品阅读:日本精算师考试资料(4) 2014-11-05
-
为你揭晓日本精算师考试资料(4) 2014-11-05
-
推荐阅读:日本精算师考试资料(4) 2014-11-05
-
值得一看:日本精算师考试资料(4) 2014-11-05
-
考生注意:日本精算师考试资料(4) 2014-11-05
-
攻略:日本精算师考试资料(4) 2014-11-05
-
考生看过来:日本精算师考试资料(4) 2014-11-05
-
湖州考生进:日本精算师考试资料(3) 2014-11-05
-
杭州考生进:日本精算师考试资料(3) 2014-11-05
-
台州考生进:日本精算师考试资料(3) 2014-11-05
-
昭通考生进:日本精算师考试资料(3) 2014-11-05
-
玉溪考生进:日本精算师考试资料(3) 2014-11-05
-
西双版纳傣族自治州考生进:日本精算师考试资料(3) 2014-11-05
-
文山壮族苗族自治州考生进:日本精算师考试资料(3) 2014-11-05
-
曲靖考生进:日本精算师考试资料(3) 2014-11-05
高顿项目


