考研数学是考研所有科目中较难的科目,而线性代数则是考研数学的重点,大家要特别重视。因此高顿考研数学老师整理了线性代数知识的四大特点,希望对大家的复习有所帮助。
一、内容抽象,尤其向量部分最为典型。在现实生活中,我们可以看到一维空间、二维空间甚至是三维空间,但是对于三维空间我们是难以想象的。向量主要研究的就是三维向量,所以这就需要较强的抽象思维和逻辑推理能力,这一点对于侧重于计算能力培养的工科学生来说是一个难点。因此在学习的过程中,对所涉及的基本概念应当先理解好它们的定义,在理解基础之上,才能深刻理解它们与其他概念的联系以及它们的作用,一步步达到运用自如的境地。
二、概念多,性质多,定义多,定理多。例如有关矩阵的,就有相似矩阵、合同矩阵、正定矩阵、正交矩阵、伴随矩阵等。在向量这部分,向量组线性相关的性质就10来个。
三、符号多,运算法则多,有些运算法则与以前的完全不同。正如《2012年全国硕士研究生入学统一考试数学考试大纲配套强化指导》第二篇线性代数部分所说的,对于数的运算我们满足交换律、结合律和消去律;但是矩阵的运算与之有相同的也有不同的,矩阵的运算不满足交换律和消去律,但是满足结合律。所以这些在复习的时候一定要注意区分。
四、内容纵横交错,前后联系紧密,环环相扣,相互渗透。
线性代数内容之间的联系是比较紧密的。相对高数来说,它们的联系又是非常隐蔽的。以可逆矩阵为例,阶矩阵是可逆的,从行列式的角度有其等价说法,就是阶矩阵的行列式不等于0;从矩阵的角度它的等价说法是矩阵的秩等于阶数,从向量的角度描述,就是矩阵的行向量组是线性无关的,同时列向量组也是线性无关的,并且任何一个三维列(行)向量都可以由该矩阵的列(行)向量组来线性表示;从特征值的角度描述,就是矩阵的特征值都是非零的。
因此在学习的过程中,对所涉及的概念、性质及定理要理解,同时很多东西还要靠记忆,尤其要注意基本概念、基本方法之间的相互关系,有些问题是相互交错,相互渗透,似螺旋上升,比如矩阵的秩与向量组的秩、线性方程组与向量组的线性组合、线性相关之间的关系。弄清这些关系,一方面可对所涉及的概念通过不断重复而达到加深印象的目的,另一方面也能对问题有进一步的深入理解。
展开全文
版权声明:本条内容自发布之日起,有效期为一个月。凡本网站注明“来源高顿教育”或“来源高顿网校”或“来源高顿”的所有作品,均为本网站合法拥有版权的作品,未经本网站授权,任何媒体、网站、个人不得转载、链接、转帖或以其他方式使用。 经本网站合法授权的,应在授权范围内使用,且使用时必须注明“来源高顿教育”或“来源高顿网校”或“来源高顿”,并不得对作品中出现的“高顿”字样进行删减、替换等。违反上述声明者,本网站将依法追究其法律责任。 本网站的部分资料转载自互联网,均尽力标明作者和出处。本网站转载的目的在于传递更多信息,并不意味着赞同其观点或证实其描述,本网站不对其真实性负责。 如您认为本网站刊载作品涉及版权等问题,请与本网站联系(邮箱fawu@gaodun.com,电话:021-31587497),本网站核实确认后会尽快予以处理。