要求考生熟练掌握数学分析的基本概念、基本理论和基本方法。具有严格的数学论证能力、举反例能力和基本计算能力。了解数学分析中的基本概念、理论、方法的实际来源和历史背景,清楚它们的几何意义和物理意义,初步具备应用数学分析解决实际问题能力。以下是南方科技大学考研610数学分析考试大纲发布,2023最新整理的详细内容,希望对大家有所帮助。
南方科技大学考研610 数学分析考试大纲发布!2023最新整理
  一、考试内容
  1)极限和连续性
  a.数列极限与函数极限的概念,包括数列的上、下极限和函数的左、右极限。
  b.极限的性质及四则运算性质,两面夹原理。
  c.区间套定理,确界存在定理,单调有界原理,Bolzano-Weierstrass定理,Heine-Borel有限覆盖定理,Cauchy收敛准则。
  d.函数连续性的概念及相关的不连续点类型。函数连续的四则运算与复合运算性质,以及无穷小量比较。
  e.闭区间上连续函数的性质:有界性定理、最值定理、介值定理和一致连续性定理。
  2)一元函数微分学
  a.导数和微分的概念及其相互关系,导数的几何意义和物理意义,函数可导性与连续性之间的关系。
  b.函数导数与微分的运算法则,包括高阶导数的运算法则,分段函数的导数。
  c.Rolle中值定理,Lagrange中值定理和Cauchy中值定理以及Taylor公式。
  d.函数的导数与单调性,极值,最值和凸凹性。
  e.L’Hopital(洛必达)法则,不定式极限。
  3)一元函数积分学
  a.不定积分的概念,不定积分的基本公式,换元积分法和分部积分法,有理函数、三角函数和简单无理函数的积分。
  b.定积分的概念,包括Darboux和,上、下积分及可积条件与可积函数类。
  c.定积分的性质,微积分基本定理,定积分的换元积分法和分部积分法。
  d.用定积分表达和计算一些几何量与物理量(平面图形的面积,平面曲线的弧长,旋转体的体积与侧面积,平行截面面积已知的立体体积,变力做功和物体的质量与质心)。
  e.广义积分的概念,广义积分收敛的比较判别法,Abel判别法和Dirichlet判别法,其中包括积分第二中值定理。
  4)无穷级数
  a.数项级数敛散性的概念,数项级数的基本性质。
  b.正项级数敛散的必要条件,比较判别法,Cauchy判别法,D’Alembert判别法与积分判别法。
  c.任意项级数绝对收敛与条件收敛的概念及其相互关系,交错级数的Leibnitz判别法,绝对收敛级数的性质。
  d.函数项级数一致收敛性的概念以及判断一致收敛性的Weierstrass判别法,Abel判别法和Dirichlet判别法,一致收敛级数的性质。
  e.幂级数及其收敛半径的概念,包括Cauchy-Hadamard定理和Abel第一定理。
  f.幂级数的性质,将函数展开为幂级数,Weierstrass逼近定理。
  g.Fourier级数的概念与性质以及收敛性的判别法。
  5)多元函数微分学与积分学
  a.多元函数极限与连续性,偏导数和全微分的概念,多元函数的偏导数与全微分。
  b.隐函数存在定理,反函数定理。
  c.多元函数极值和条件极值,Lagrange乘子法,偏导数的几何应用。
  d.重积分,第一型、第二型曲线积分和曲面积分的概念与计算。
  e.梯度,散度,旋度及其物理、几何意义。
  f.Gauss公式、Green公式和Stokes公式及其应用。
  6)含参变量积分
  a.含参变量常义积分的概念与性质。
  b.含参变量广义积分的一致收敛性的概念及其判别法,一致收敛的含参变量广义积分的性质。
  二、参考书目:
  《数学分析教程》(上、下册),常庚哲、史济怀编,中国科学技术大学出版社,2013年,第三版。
  注意:以上信息均为手动整理,相关数据来源于南方科技大学院校官网,如有遗漏,欢迎留言补充,谢谢!23考研信息有变动请以报考院校官方发布的最新数据为准,本文仅供参考。
  以上,就是高顿小编为大家整理的南方科技大学考研610数学分析考试大纲发布,2023最新整理的主要内容,祝大家考研顺利,都能考上自己理想的院校。更多考研学校内容,考研专业,请登陆高顿考研考试频道。


展开全文