1.在连续奇数1,3,……205.207中选取N个不同数,使得它们的和为2359,那么N的最大值是?
A.47
B.48
C.50
D.51
B.48
C.50
D.51
2.扑克牌中的J、Q、K分别表示11、12、13,甲取13张红心,乙取13张草花,两个都各自任意出一张牌凑成一对,这样一共可凑成13对,如果将每对求和,再将这13个和相乘,从积的奇偶性看,积应是()
A、偶数
B、奇数
B、奇数
3.按照偶数性分类,1¹+2²+3³+4⁴+.....2²º¹⁴是()
A、偶数
B、奇数
B、奇数
4.若一个三角形的所有边长都是整数,其周长是偶数,且已知其中的两边长分别为10和2000,则满足条件的三角形总个数是()
A.10
B.7
C.8
D.9
B.7
C.8
D.9
5.若x、y、z是三个连续的负整数,并且x>y>z,则下列表达式是正奇数的为:
A.yz-x
B.(x-y)(y-z)
C.x-yz
D.x(y-z)
B.(x-y)(y-z)
C.x-yz
D.x(y-z)
参考答案:
1.在连续奇数1,3,……205.207中选取N个不同数,使得它们的和为2359,那么N的最大值是?
A.47 B.48 C.50 D.51
答案:A
2.扑克牌中的J、Q、K分别表示11、12、13,甲取13张红心,乙取13张草花,两个都各自任意出一张牌凑成一对,这样一共可凑成13对,如果将每对求和,再将这13个和相乘,从积的奇偶性看,积应是()
答案:A偶数
3.按照偶数性分类,1¹+2²+3³+4⁴+.....2²º¹⁴是()
答案:A
4.若一个三角形的所有边长都是整数,其周长是偶数,且已知其中的两边长分别为10和2000,则满足条件的三角形总个数是()
A.10 B.7 C.8 D.9
答案:D
5.若x、y、z是三个连续的负整数,并且x>y>z,则下列表达式是正奇数的为:
A.yz-x B.(x-y)(y-z)C.x-yz D.x(y-z)
答案:B
展开全文
版权声明:本条内容自发布之日起,有效期为一个月。凡本网站注明“来源高顿教育”或“来源高顿网校”或“来源高顿”的所有作品,均为本网站合法拥有版权的作品,未经本网站授权,任何媒体、网站、个人不得转载、链接、转帖或以其他方式使用。 经本网站合法授权的,应在授权范围内使用,且使用时必须注明“来源高顿教育”或“来源高顿网校”或“来源高顿”,并不得对作品中出现的“高顿”字样进行删减、替换等。违反上述声明者,本网站将依法追究其法律责任。 本网站的部分资料转载自互联网,均尽力标明作者和出处。本网站转载的目的在于传递更多信息,并不意味着赞同其观点或证实其描述,本网站不对其真实性负责。 如您认为本网站刊载作品涉及版权等问题,请与本网站联系(邮箱fawu@gaodun.com,电话:021-31587497),本网站核实确认后会尽快予以处理。
-
2018银行校园招聘考试每日一练(7.18) 高顿教育 2017-07-19 09:09:17
-
2018银行校园招聘考试每日一练(7.13) 高顿教育 2017-07-14 08:45:00
-
2017农信社招聘考试每日一练(5.10) 高顿教育 2017-07-13 13:49:59
-
2017农信社招聘考试每日一练(5.9) 高顿教育 2017-07-13 13:48:38
-
2017农信社招聘考试每日一练(5.6) 高顿教育 2017-07-13 13:45:29