cumulative distribution functionor just "distribution function" defines the probability that a random variable takes a value equal to or less than a given number: P(X ≤ x) or F(X). Using the probability function defined earlier: X:(1, 2, 3, 4), p(x) = x / 10, F(1) = 0.1, F(2) = 0.3, F(3) = 0.6, F(4) = 1. In other words, F(3) represents the cumulative probability that outcomes 1, 2, and 3 occur.g: Define a discrete uniform random variable and calculate probabilities, given a discrete uniform probability distribution.
The discrete uniform random variableis one where the probabilities are equal for all possible outcomes. One example is X:(1,2, 3, 4, 5), p(x) = 0.2. In this case, the probabilities are equal for each possible outcome (20%). The probability of any one outcome is 0.2 and the probability of any "n" outcomes is n * 0.2. For example, p(2 ≤ X ≤ 4) = p(2) + p(3) + p(4) = 0.6, and F(2) = p(1) + p(2) = 0.4.
h: Define a binomial random variable and calculate probabilities, given a binomial probability distribution.
The binomial random variableis the number of "success" in a given number of "trial" where the outcome can either be "success" or "failure." The probability of success is constant for each trial, and the trials are independent. A trial is like a mini-experiment and the final outcome is the number of successes in the series of n-trials. Under these conditions, the probability of "x" success in "n" trials is calculated using the following formula:
p(x) = P(X = x) = [number of ways to choose x from n]px(1 - p)n - x
版权声明:本条内容自发布之日起,有效期为一个月。凡本网站注明“来源高顿教育”或“来源高顿网校”或“来源高顿”的所有作品,均为本网站合法拥有版权的作品,未经本网站授权,任何媒体、网站、个人不得转载、链接、转帖或以其他方式使用。
经本网站合法授权的,应在授权范围内使用,且使用时必须注明“来源高顿教育”或“来源高顿网校”或“来源高顿”,并不得对作品中出现的“高顿”字样进行删减、替换等。违反上述声明者,本网站将依法追究其法律责任。
本网站的部分资料转载自互联网,均尽力标明作者和出处。本网站转载的目的在于传递更多信息,并不意味着赞同其观点或证实其描述,本网站不对其真实性负责。
如您认为本网站刊载作品涉及版权等问题,请与本网站联系(邮箱fawu@gaodun.com,电话:021-31587497),本网站核实确认后会尽快予以处理。