2022年研究生考试即将开始,2022年研究生考试备考正在进行,为帮助大家,这里编辑了2022研究生考试数学三考试大纲的内容,供大家参考。更多内容以高顿研招网发布的信息为准。

(由于2022年的大纲还未发布,这里给大家整理了2021年的内容,具体信息请以官方网站发布的信息为准)

2022研究生考试数学三考试大纲已发布(三)

常微分方程与差分方程

考试要求

1.了解微分方程及其阶、解、通解、初始条件和特解等概念.

2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.

3.理解线性微分方程解的性质及解的结构.

4.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.

5.会解自由项为多项式、指数函数、正弦函数、余弦函数以及他们的和与积的二阶常系数非齐次线性微分方程.

6.了解差分与差分方程及其通解与特解等概念.

7.了解一阶常系数线性差分方程的求解方法.

8.会用微分方程求解简单的经济应用问题.

 2023考研免费资料包 点击领取 

2023考研专业老师 点击咨询 

无穷级数

考试要求

1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.

2.掌握几何级数与p级数的收敛和发散的条件.

3.掌握正项级数收敛性的比较判别法、比值判别法、根值判别法,会用积分判别法.

4.掌握交错级数的莱布尼茨判别法.

5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.

6.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.

7.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.

8.掌握 e的x次方, sin x, cos x, ln(1+x)及(1+x)的a 次方的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.

以上就是本篇得全部内容,更多相关考研知识,备考方案,考研资料与方法,欢迎大家前往高顿教育官网考研频道


展开全文